Of course, while it’s all very well to piously state that correlation doesn’t imply causation, it does leave us with a conundrum: under what conditions, exactly, can we use experimental data to deduce a causal relationship between two or more variables?

The standard scientific answer to this question is that (with some caveats) we can infer causality from a well designed randomized controlled experiment. Unfortunately, while this answer is satisfying in principle and sometimes useful in practice, it’s often impractical or impossible to do a randomized controlled experiment. And so we’re left with the question of whether there are other procedures we can use to infer causality from experimental data. And, given that we can find more general procedures for inferring causal relationships, what does causality mean, anyway, for how we reason about a system?

It might seem that the answers to such fundamental questions would have been settled long ago. In fact, they turn out to be surprisingly subtle questions. Over the past few decades, a group of scientists have developed a theory of causal inference intended to address these and other related questions. This theory can be thought of as an algebra or language for reasoning about cause and effect. Many elements of the theory have been laid out in a famous book by one of the main contributors to the theory, Judea Pearl. Although the theory of causal inference is not yet fully formed, and is still undergoing development, what has already been accomplished is interesting and worth understanding.

In this post I will describe one small but important part of the theory of causal inference, a causal calculus developed by Pearl. This causal calculus is a set of three simple but powerful algebraic rules which can be used to make inferences about causal relationships. In particular, I’ll explain how the causal calculus can sometimes (but not always!) be used to infer causation from a set of data, even when a randomized controlled experiment is not possible. Also in the post, I’ll describe some of the limits of the causal calculus, and some of my own speculations and questions.

The post is a little technically detailed at points. However, the first three sections of the post are non-technical, and I hope will be of broad interest. Throughout the post I’ve included occasional “Problems for the author”, where I describe problems I’d like to solve, or things I’d like to understand better. Feel free to ignore these if you find them distracting, but I hope they’ll give you some sense of what I find interesting about the subject. Incidentally, I’m sure many of these problems have already been solved by others; I’m not claiming that these are all open research problems, although perhaps some are. They’re simply things I’d like to understand better. Also in the post I’ve included some exercises for the reader, and some slightly harder problems for the reader. You may find it informative to work through these exercises and problems.

Before diving in, one final caveat: I am not an expert on causal inference, nor on statistics. The reason I wrote this post was to help me internalize the ideas of the causal calculus. Occasionally, one finds a presentation of a technical subject which is beautifully clear and illuminating, a presentation where the author has seen right through the subject, and is able to convey that crystalized understanding to others. That’s a great aspirational goal, but I don’t yet have that understanding of causal inference, and these notes don’t meet that standard. Nonetheless, I hope others will find my notes useful, and that experts will speak up to correct any errors or misapprehensions on my part.

Simpson’s paradox

Let me start by explaining two example problems to illustrate some of the difficulties we run into when making inferences about causality. The first is known as Simpson’s paradox. To explain Simpson’s paradox I’ll use a concrete example based on the passage of the Civil Rights Act in the United States in 1964.

In the US House of Representatives, 61 percent of Democrats voted for the Civil Rights Act, while a much higher percentage, 80 percent, of Republicans voted for the Act. You might think that we could conclude from this that being Republican, rather than Democrat, was an important factor in causing someone to vote for the Civil Rights Act. However, the picture changes if we include an additional factor in the analysis, namely, whether a legislator came from a Northern or Southern state. If we include that extra factor, the situation completely reverses, in both the North and the South. Here’s how it breaks down:

North: Democrat (94 percent), Republican (85 percent)

South: Democrat (7 percent), Republican (0 percent)

Yes, you read that right: in both the North and the South, a larger fraction of Democrats than Republicans voted for the Act, despite the fact that overall a larger fraction of Republicans than Democrats voted for the Act.

You might wonder how this can possibly be true. I’ll quickly state the raw voting numbers, so you can check that the arithmetic works out, and then I’ll explain why it’s true. You can skip the numbers if you trust my arithmetic.

North: Democrat (145/154, 94 percent), Republican (138/162, 85 percent)

South: Democrat (7/94, 7 percent), Republican (0/10, 0 percent)

Overall: Democrat (152/248, 61 percent), Republican (138/172, 80 percent)

One way of understanding what’s going on is to note that a far greater proportion of Democrat (as opposed to Republican) legislators were from the South. In fact, at the time the House had 94 Democrats, and only 10 Republicans. Because of this enormous difference, the very low fraction (7 percent) of southern Democrats voting for the Act dragged down the Democrats’ overall percentage much more than did the even lower fraction (0 percent) of southern Republicans who voted for the Act.

(The numbers above are for the House of Congress. The numbers were different in the Senate, but the same overall phenomenon occurred. I’ve taken the numbers from Wikipedia’s article about Simpson’s paradox, and there are more details there.)

If we take a naive causal point of view, this result looks like a paradox. As I said above, the overall voting pattern seems to suggest that being Republican, rather than Democrat, was an important causal factor in voting for the Civil Rights Act. Yet if we look at the individual statistics in both the North and the South, then we’d come to the exact opposite conclusion. To state the same result more abstractly, Simpson’s paradox is the fact that the correlation between two variables can actually be reversed when additional factors are considered. So two variables which appear correlated can become anticorrelated when another factor is taken into account.

You might wonder if results like those we saw in voting on the Civil Rights Act are simply an unusual fluke. But, in fact, this is not that uncommon. Wikipedia’s page on Simpson’s paradox lists many important and similar real-world examples ranging from understanding whether there is gender-bias in university admissions to which treatment works best for kidney stones. In each case, understanding the causal relationships turns out to be much more complex than one might at first think.

Read the blog post for the rest, with diagrams.